Tir na Nog
Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы.
Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза.
После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2.
Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор ?

Ответ - в комментариях)

@темы: Интересности

Комментарии
07.12.2008 в 21:43

Tir na Nog
При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ.
Однако такой ход рассуждений неверен. Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.
07.12.2008 в 22:01

Langepass
Неунывающая улитка
Ох, блинннн. Класс!
07.12.2008 в 22:30

cold fish
эта задача была в фильме 21 ))
07.12.2008 в 22:37

Tir na Nog
Langepass, представляешь, статистика может быть и такой - интересной;-)

Джек , не смотрела, к сожалению.
08.12.2008 в 03:11

...улыбнусь порою, порой отплюнусь...
Я эту "проблему" очень люблю, это старинная задача. И тяжело людям объяснить, многие не верят решению.